New Publication: A Modified AUC for Training Convolutional Neural Networks: Taking Confidence Into Account

Published in Frontiers in Artificial Intelligence

Receiver operating characteristic (ROC) curve is an informative tool in binary classification and Area Under ROC Curve (AUC) is a popular metric for reporting performance of binary classifiers. In this paper, first we present a comprehensive review of ROC curve and AUC metric. Next, we propose a modified version of AUC that takes confidence of the model into account and at the same time, incorporates AUC into Binary Cross Entropy (BCE) loss used for training a Convolutional neural Network for classification tasks. We demonstrate this on three datasets: MNIST, prostate MRI, and brain MRI. Furthermore, we have published GenuineAI, a new python library, which provides the functions for conventional AUC and the proposed modified AUC along with metrics including sensitivity, specificity, recall, precision, and F1 for each point of the ROC curve.

New Publication: Data Augmentation Using Generative Adversarial Networks (GANs) for GAN-based Detection of Pneumonia and COVID-19 in Chest X-ray Images

Published in Informatics in Medicine Unlocked

Successful training of convolutional neural networks (CNNs) requires a substantial amount of data. With small datasets, networks generalize poorly. Data Augmentation techniques improve the generalizability of neural networks by using existing training data more effectively. Standard data augmentation methods, however, produce limited plausible alternative data. Generative Adversarial Networks (GANs) have been utilized to generate new data and improve the performance of CNNs. Nevertheless, data augmentation techniques for training GANs are underexplored compared to CNNs. In this work, we propose a new GAN architecture for augmentation of chest X-rays for semi-supervised detection of pneumonia and COVID-19 using generative models. We show that the proposed GAN can be used to effectively augment data and improve classification accuracy of disease in chest X-rays for pneumonia and COVID-19. We compare our augmentation GAN model with Deep Convolutional GAN and traditional augmentation methods (rotate, zoom, etc.) on two different X-ray datasets and show our GAN-based augmentation method surpasses other augmentation methods for training a GAN in detecting anomalies in X-ray images.

New Publication: Radiomics, Machine Learning, Artificial Intelligence – What the Neuroradiologist Needs to Know

Published in Neuroradiology


Artificial intelligence (AI) is playing an ever-increasing role in Neuroradiology.


When designing AI-based research in neuroradiology and appreciating the literature, it is important to understand the fundamental principles of AI. Training, validation, and test datasets must be defined and set apart as priorities. External validation and testing datasets are preferable, when feasible. The specific type of learning process (supervised vs. unsupervised) and the machine learning model also require definition. Deep learning (DL) is an AI-based approach that is modelled on the structure of neurons of the brain; convolutional neural networks (CNN) are a commonly used example in neuroradiology.


Radiomics is a frequently used approach in which a multitude of imaging features are extracted from a region of interest and subsequently reduced and selected to convey diagnostic or prognostic information. Deep radiomics uses CNNs to directly extract features and obviate the need for predefined features.


Common limitations and pitfalls in AI-based research in neuroradiology are limited sample sizes (“small-n-large-p problem”), selection bias, as well as overfitting and underfitting.

New Publication: A Transfer Learning Based Active Learning Framework for Brain Tumor Classification

Published in Frontiers in Artificial Intelligence

Brain tumor is one of the leading causes of cancer-related death globally among children and adults. Precise classification of brain tumor grade (low-grade and high-grade glioma) at an early stage plays a key role in successful prognosis and treatment planning. With recent advances in deep learning, artificial intelligence–enabled brain tumor grading systems can assist radiologists in the interpretation of medical images within seconds. The performance of deep learning techniques is, however, highly depended on the size of the annotated dataset. It is extremely challenging to label a large quantity of medical images, given the complexity and volume of medical data. In this work, we propose a novel transfer learning–based active learning framework to reduce the annotation cost while maintaining stability and robustness of the model performance for brain tumor classification. In this retrospective research, we employed a 2D slice–based approach to train and fine-tune our model on the magnetic resonance imaging (MRI) training dataset of 203 patients and a validation dataset of 66 patients which was used as the baseline. With our proposed method, the model achieved area under receiver operating characteristic (ROC) curve (AUC) of 82.89% on a separate test dataset of 66 patients, which was 2.92% higher than the baseline AUC while saving at least 40% of labeling cost. In order to further examine the robustness of our method, we created a balanced dataset, which underwent the same procedure. The model achieved AUC of 82% compared with AUC of 78.48% for the baseline, which reassures the robustness and stability of our proposed transfer learning augmented with active learning framework while significantly reducing the size of training data.

New Article: A Comprehensive Study of Data Augmentation Strategies for Prostate Cancer Detection in Diffusion-Weighted MRI Using Convolutional Neural Networks

Published in Journal of Digital Imaging

Data augmentation refers to a group of techniques whose goal is to battle limited amount of available data to improve model generalization and push sample distribution toward the true distribution. While different augmentation strategies and their combinations have been investigated for various computer vision tasks in the context of deep learning, a specific work in the domain of medical imaging is rare and to the best of our knowledge, there has been no dedicated work on exploring the effects of various augmentation methods on the performance of deep learning models in prostate cancer detection. In this work, we have statically applied five most frequently used augmentation techniques (random rotation, horizontal flip, vertical flip, random crop, and translation) to prostate diffusion-weighted magnetic resonance imaging training dataset of 217 patients separately and evaluated the effect of each method on the accuracy of prostate cancer detection. The augmentation algorithms were applied independently to each data channel and a shallow as well as a deep convolutional neural network (CNN) was trained on the five augmented sets separately. We used area under receiver operating characteristic (ROC) curve (AUC) to evaluate the performance of the trained CNNs on a separate test set of 95 patients, using a validation set of 102 patients for finetuning. The shallow network outperformed the deep network with the best 2D slice-based AUC of 0.85 obtained by the rotation method.

New Article: RANDGAN: Randomized Generative Adversarial Network for Detection of COVID-19 in Chest X-ray

Published in Nature Scientific Reports

COVID-19 spread across the globe at an immense rate and has left healthcare systems incapacitated to diagnose and test patients at the needed rate. Studies have shown promising results for detection of COVID-19 from viral bacterial pneumonia in chest X-rays. Automation of COVID-19 testing using medical images can speed up the testing process of patients where health care systems lack sufficient numbers of the reverse-transcription polymerase chain reaction tests. Supervised deep learning models such as convolutional neural networks need enough labeled data for all classes to correctly learn the task of detection. Gathering labeled data is a cumbersome task and requires time and resources which could further strain health care systems and radiologists at the early stages of a pandemic such as COVID-19. In this study, we propose a randomized generative adversarial network (RANDGAN) that detects images of an unknown class (COVID-19) from known and labelled classes (Normal and Viral Pneumonia) without the need for labels and training data from the unknown class of images (COVID-19). We used the largest publicly available COVID-19 chest X-ray dataset, COVIDx, which is comprised of Normal, Pneumonia, and COVID-19 images from multiple public databases. In this work, we use transfer learning to segment the lungs in the COVIDx dataset. Next, we show why segmentation of the region of interest (lungs) is vital to correctly learn the task of classification, specifically in datasets that contain images from different resources as it is the case for the COVIDx dataset. Finally, we show improved results in detection of COVID-19 cases using our generative model (RANDGAN) compared to conventional generative adversarial networks for anomaly detection in medical images, improving the area under the ROC curve from 0.71 to 0.77.

New Article: Improving prognostic performance in resectable pancreatic ductal adenocarcinoma using radiomics and deep learning features fusion in CT images

Published in Nature Scientific Reports

As an analytic pipeline for quantitative imaging feature extraction and analysis, radiomics has grown rapidly in the past decade. On the other hand, recent advances in deep learning and transfer learning have shown significant potential in the quantitative medical imaging field, raising the research question of whether deep transfer learning features have predictive information in addition to radiomics features. In this study, using CT images from Pancreatic Ductal Adenocarcinoma (PDAC) patients recruited in two independent hospitals, we discovered most transfer learning features have weak linear relationships with radiomics features, suggesting a potential complementary relationship between these two feature sets. We also tested the prognostic performance for overall survival using four feature fusion and reduction methods for combining radiomics and transfer learning features and compared the results with our proposed risk score-based feature fusion method. It was shown that the risk score-based feature fusion method significantly improves the prognosis performance for predicting overall survival in PDAC patients compared to other traditional feature reduction methods used in previous radiomics studies (40% increase in area under ROC curve (AUC) yielding AUC of 0.84).

Opening for Graduate Studies in AI in Medicine

At The Hospital for Sick Children, we have opening for a fully funded MSc student (domestic applicants only) in the field of Machine Learning for Medical Imaging and Medicine for January 2021 admission to Institute of Medical Science (IMS) at the University of Toronto. The research project is AI in Medicine with the emphasis on radiomics and deep learning for diagnosis and prognosis of brain tumours, which requires a strong background in statistical analysis and machine learning. The successful candidate may have the option to start as a Research Assistant at SickKids in Sep 2020 until she/he transitions to MSc student in January 2021. If interested, please send your CV and transcripts along with list of references to farzad dot khalvati at before Aug 23, 2020. The successful candidate will be invited to apply to the School of Graduate Studies at the University of Toronto.

Call for Papers: AI in Medicine

Sensors Special Issue: Deep Learning-Based Imaging and Sensing Technologies for Biomedical Applications (Impact Factor: 3.27)

With the advent of deep learning, Artificial Intelligence (AI) models, including convolutional neural networks (CNNs), have delivered promising results for health monitoring and detection and prediction of different diseases using biomedical imaging and sensing technologies. These technologies help to improve the overall patient outcome by providing personalized diagnostics, prognostics, and treatment, improving the quality of life of patients. The unique challenges of developing AI models for health monitoring and disease diagnosis and prognosis using imaging and sensing technologies require customized models that go beyond off-the-shelf and generic AI solutions. These challenges include high accuracy, reliability, and explainability of the AI results for biomedical applications. To bring state-of-the-art research together, research papers reporting novel AI-driven imaging and/or sensing technologies with clinical applications are invited for submission to this Special Issue. The scope and topic of this Special Issue includes but is not limited to:

  • AI-driven advances in biomedical optical imaging/sensing technologies (e.g., optical imaging, optical coherence tomography, near infrared spectroscopy, diffuse optical spectroscopy) for biomedical applications;
  • AI-driven advances in medical image analysis using deep learning for different imaging modalities including X-ray, CT, MRI, PET, ultrasound, etc.;
  • Advances in AI-based solutions for disease diagnosis and prognosis using imaging and/or sensing technologies;
  • Advances in AI explainability solutions for imaging and/or sensing technologies that address different aspects of AI explainability, including novel attention map generators as well as ways to interpret the results and integrate them into clinical settings.

Dr. Farzad Khalvati
Guest Editor